Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Stem Cells ; 41(8): 762-774, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37280108

RESUMO

Glioblastoma stem cells (GSCs) have unique properties of self-renewal and tumor initiation that make them potential therapeutic targets. Development of effective therapeutic strategies against GSCs requires both specificity of targeting and intracranial penetration through the blood-brain barrier. We have previously demonstrated the use of in vitro and in vivo phage display biopanning strategies to isolate glioblastoma targeting peptides. Here we selected a 7-amino acid peptide, AWEFYFP, which was independently isolated in both the in vitro and in vivo screens and demonstrated that it was able to target GSCs over differentiated glioma cells and non-neoplastic brain cells. When conjugated to Cyanine 5.5 and intravenously injected into mice with intracranially xenografted glioblastoma, the peptide localized to the site of the tumor, demonstrating intracranial tumor targeting specificity. Immunoprecipitation of the peptide with GSC proteins revealed Cadherin 2 as the glioblastoma cell surface receptor targeted by the peptides. Peptide targeting of Cadherin 2 on GSCs was confirmed through ELISA and in vitro binding analysis. Interrogation of glioblastoma databases demonstrated that Cadherin 2 expression correlated with tumor grade and survival. These results confirm that phage display can be used to isolate unique tumor-targeting peptides specific for glioblastoma. Furthermore, analysis of these cell specific peptides can lead to the discovery of cell specific receptor targets that may serve as the focus of future theragnostic tumor-homing modalities for the development of precision strategies for the treatment and diagnosis of glioblastomas.


Assuntos
Caderinas , Técnicas de Visualização da Superfície Celular , Glioblastoma , Peptídeos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células-Tronco Neoplásicas , Humanos , Animais , Camundongos , Transplante de Neoplasias , Peptídeos/uso terapêutico , Caderinas/antagonistas & inibidores , Terapia de Alvo Molecular , Modelos Animais de Doenças
2.
J Biol Chem ; 299(3): 102944, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707052

RESUMO

Hemagglutinin (HA), a nontoxic component of the botulinum neurotoxin (BoNT) complex, binds to E-cadherin and inhibits E-cadherin-mediated cell-cell adhesion. HA is a 470 kDa protein complex comprising six HA1, three HA2, and three HA3 subcomponents. Thus, to prepare recombinant full-length HA in vitro, it is necessary to reconstitute the macromolecular complex from purified HA subcomponents, which involves multiple purification steps. In this study, we developed NanoHA, a minimal E-cadherin inhibitor protein derived from Clostridium botulinum HA with a simple purification strategy needed for production. NanoHA, containing HA2 and a truncated mutant of HA3 (amino acids 380-626; termed as HA3mini), is a 47 kDa single polypeptide (one-tenth the molecular weight of full-length HA, 470 kDa) engineered with three types of modifications: (i) a short linker sequence between the C terminus of HA2 and N terminus of HA3; (ii) a chimeric complex composed of HA2 derived from the serotype C BoNT complex and HA3mini from the serotype B BoNT complex; and (iii) three amino acid substitutions from hydrophobic to hydrophilic residues on the protein surface. We demonstrated that NanoHA inhibits E-cadherin-mediated cell-cell adhesion of epithelial cells (e.g., Caco-2 and Madin-Darby canine kidney cells) and disrupts their epithelial barrier. Finally, unlike full-length HA, NanoHA can be transported from the basolateral side to adherens junctions via passive diffusion. Overall, these results indicate that the rational design of NanoHA provides a minimal E-cadherin inhibitor with a wide variety of applications as a lead molecule and for further molecular engineering.


Assuntos
Toxinas Botulínicas , Caderinas , Engenharia de Proteínas , Animais , Cães , Humanos , Células CACO-2 , Caderinas/antagonistas & inibidores , Clostridium botulinum , Hemaglutininas/química , Células Madin Darby de Rim Canino , Adesão Celular/efeitos dos fármacos
3.
Life Sci ; 285: 119954, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520770

RESUMO

HER2-positive breast cancer (HER2-BC) shows the over-expression of tyrosine kinase receptor EphB4 associated with poor disease prognosis. E-cadherin is found as a survival factor in multiple models of breast cancer by suppressing reactive oxygen-mediated apoptosis. This study confirmed that both HER2 and EphB4 are positively correlated with E-cadherin in HER2-BC. Inhibition of HER2 or EphB4 is discovered to induce ROS-dependent apoptosis by decreasing E-cadherin expression in SKBR3 and MDA-MB-453 cells. TAD1822-7 (TAD), a novel biphenyl urea taspine derivative, exhibits good growth inhibition, apoptosis induction and ROS accumulation effects on SKBR3 and MDA-MB-453 cells. Mechanistic investigation revealed that TAD blockades both EphB4 positive signal transduction and activation of HER2 signal transduction, thereby suppressing E-cadherin/TGF-ß/p-Smad2/3 signaling axis to elicit ROS-dependent endogenous mitochondrial apoptosis. Together, these findings not only provide a new approach for HER2-BC therapy but also increase our understanding of the regulating effect of E-cadherin by HER2 and EphB4 in ROS-mediated apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Caderinas/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Receptor EphB4/metabolismo , Receptor ErbB-2/metabolismo , Antígenos CD , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Mitocôndrias/efeitos dos fármacos , Compostos de Fenilureia/química , Espécies Reativas de Oxigênio , Receptor EphB4/genética , Células-Tronco/efeitos dos fármacos
4.
Nano Lett ; 21(13): 5540-5546, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34161107

RESUMO

Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promising target for enhancing generation of iPSCs. Here, we nanoengineered N-cadherin-blocking peptide ADH-1 with gold nanoparticles, generating a multivalent N-cadherin antagonist (ADH-AuNPs), for improving reprogramming efficiency through driving cell MET. ADH-AuNPs exhibited good biocompatibility and showed higher N-cadherin inhibitory activity than ADH-1 due to multivalency, thereby enhancing cell-state reprogramming toward epithelial lineages. Particularly, ADH-AuNPs improved reprogramming efficiency by more than 7-fold after introduction of four Yamanaka factors. Importantly, ADH-AuNPs generated iPSCs displayed high stemness and pluripotency in vitro and in vivo. Therefore, we provide a cooperative strategy for promoting the iPSC generation efficacy.


Assuntos
Caderinas/antagonistas & inibidores , Reprogramação Celular , Transição Epitelial-Mesenquimal , Células-Tronco Pluripotentes Induzidas , Nanopartículas Metálicas , Animais , Caderinas/genética , Fibroblastos , Ouro , Camundongos
5.
J Med Chem ; 64(9): 5886-5904, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33902288

RESUMO

The ß-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for the suppression of hyperactive Wnt/ß-catenin signaling that is vigorously involved in cancer initiation and development. Herein, we describe the medicinal chemistry optimization of a screening hit to yield novel small-molecule inhibitors of the ß-catenin/BCL9 interaction. The best compound 30 can disrupt the ß-catenin/BCL9 interaction with a Ki of 3.6 µM in AlphaScreen competitive inhibition assays. Cell-based experiments revealed that 30 selectively disrupted the ß-catenin/BCL9 PPI, while leaving the ß-catenin/E-cadherin PPI unaffected, dose-dependently suppressed Wnt signaling transactivation, downregulated oncogenic Wnt target gene expression, and on-target selectively inhibited the growth of cancer cells harboring aberrant Wnt signaling. This compound with a new chemotype can serve as a lead compound for further optimization of inhibitors for ß-catenin/BCL9 PPI.


Assuntos
Desenho de Fármacos , Piperidinas/química , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Sítios de Ligação , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Simulação de Acoplamento Molecular , Piperidinas/metabolismo , Piperidinas/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
6.
Cell Biol Int ; 45(8): 1797-1803, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33818827

RESUMO

Colorectal cancer (CRC) is the second leading cause of death of malignant tumors worldwide. Recent studies point to a role for the adiponectin-receptor axis in colorectal carcinogenesis, and in particular to the oncosuppressive properties of the T-cadherin receptor. In addition, the loss of T-cadherin expression in tumor tissues has been linked to cancer progression and attributed to aberrant methylation of its promoter. Recognizing the pivotal role of microRNAs in CRC, this study explores their possible contribution to the downregulation of T-cadherin. A systematic bioinformatics analysis, restricted by microRNA expression data in the colon or in cultured colorectal cell lines, predicted twelve top-ranking target miRNA sites within the 3' UTR of T-cadherin. Experimental validation analyses based on luciferase reporter constructs and miRNA mimic or miRNA inhibitor transfections toward colorectal adenocarcinoma cell lines indicated that miR-377-3p was able to directly bind to the T-cadherin sequence, and thus downregulating its expression. Given the oncogenic activity of miR-377 and the oncosuppressive activity of T-cadherin in CRC, the regulatory circuit highlighted in this study may add new insights into molecular mechanisms driving colorectal carcinogenesis, and perspectively it could be exploited to identify novel biomarkers and therapeutic targets.


Assuntos
Caderinas/metabolismo , Neoplasias Colorretais/metabolismo , Regulação para Baixo/fisiologia , Genes Supressores de Tumor/fisiologia , MicroRNAs/metabolismo , Células CACO-2 , Caderinas/antagonistas & inibidores , Caderinas/genética , Neoplasias Colorretais/genética , Células HT29 , Humanos , MicroRNAs/genética
7.
Biochem Cell Biol ; 99(5): 587-595, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33677985

RESUMO

Cervical cancer is one of the leading causes of mortality amongst women in developing countries, and resistance to therapy is the main reason for treatment failure. Recent advances suggest that cancer stem cells (CSCs) are critically involved in regulating the chemo-resistant behavior of cervical cancer cells. In our study, cells with the CSC phenotype were isolated, and we examined the expression levels of stem cell markers and genes associated with epithelial-mesenchymal transition (EMT) using different assays. However, the cells with the CSC phenotype could not be cultured for further cytotoxicity studies, so we established a model of CSC in cervical cancer cells. We performed siRNA-mediated knockdown of E-cadherin in these cells, and studied them for EMT-associated stem-cell-like properties. We also performed dose-dependent cell viability assays using clinically relevant drugs such as cisplatin, cyclopamine, and GANT58 to analyze the drug resistant behavior of these cancer cells. We found that knockdown of E-cadherin induces EMT in cervical cancer cells, imparting stem-cell like characteristics along with enhanced tumorsphere formation, cell migration, invasiveness, and drug resistance. This is the first study to establish a CSC model in cervical cancer cells by knockdown of E-cadherin, which can be used to develop anti-cancer therapies.


Assuntos
Caderinas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias do Colo do Útero/metabolismo , Antineoplásicos/farmacologia , Caderinas/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Fenótipo , Piridinas/farmacologia , RNA Interferente Pequeno/farmacologia , Tiofenos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Alcaloides de Veratrum/farmacologia
8.
Cell ; 184(7): 1914-1928.e19, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730596

RESUMO

Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Animais , Blastoderma/citologia , Blastoderma/fisiologia , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Embrião não Mamífero/citologia , Morfolinos/metabolismo , Reologia , Viscosidade , Peixe-Zebra/crescimento & desenvolvimento
9.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720050

RESUMO

Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ß-catenin at the cell surface, which suppressed Wnt/ß-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.


Assuntos
Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Caderinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Tolerância a Radiação/fisiologia , Adaptação Fisiológica , Animais , Antígenos CD/genética , Apoptose , Neoplasias Encefálicas/patologia , Caderinas/antagonistas & inibidores , Caderinas/genética , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Clusterina/antagonistas & inibidores , Clusterina/genética , Clusterina/metabolismo , Feminino , Técnicas de Inativação de Genes , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação/genética , Regulação para Cima , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncol Rep ; 45(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649822

RESUMO

Numerous studies have elucidated the impact of long non­coding (lnc)RNAs in carcinogenesis; however, the role and the mechanism of the lncRNA LOC284454 in hepatocellular carcinoma (HCC) remain unknown. In the present study, reverse transcription­quantitative PCR assay, χ2 analysis and Kaplan­Meier analysis were performed to assess the role of LOC284454 in HCC. Furthermore, MTT and Transwell assays were performed to measure the function of LOC284454 on HCC cell proliferation, invasion and migration. RNA immunoprecipitation, chromatin immunoprecipitation, RNA pull­down, fluorescence in situ hybridization and luciferase reporter assays were performed to explore the mechanism of LOC284454. The results revealed that LOC284454 expression was aberrantly elevated in HCC and increased LOC284454 expression was markedly associated with aggressive clinicopathological factors and shorter survival time in patients with HCC, suggesting that LOC284454 behaved as an oncogenic factor in HCC. Mechanistically, LOC284454 could bind with the enhancer of zeste homolog 2 (EZH2) mRNA and subsequently inhibit E­cadherin expression by binding to its promoter region. The rescue assay demonstrated that E­cadherin was essential for the oncogenic function of LOC284454 in HCC cells. The present results suggested that the LOC284454/EZH2/E­cadherin axis may be an alternative therapeutic target for patients with HCC.


Assuntos
Caderinas/antagonistas & inibidores , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/metabolismo , Adulto , Idoso , Antígenos CD/biossíntese , Caderinas/biossíntese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Longo não Codificante/genética
11.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33692219

RESUMO

BACKGROUND: Few patients with prostate cancer benefit from current immunotherapies. Therefore, we aimed to explore new strategies to change this paradigm. METHODS: Human tissues, cell lines and in vivo experiments were used to determine whether and how N-cadherin impacts the production of programmed death ligand-1 (PD-L1) and indole amine 2,3-dioxygenase (IDO-1) and whether N-cadherin can increase the production of effector (e)Treg cells. Then, we used PC3-bearing humanized non-obese diabetic/severe combined immunodeficiency IL2Rγnull (hNSG) mice with an intravenous injection of human CD34+ hematopoietic stem cells into the tail vein to evaluate whether the N-cadherin antagonist N-Ac-CHAVC-NH2 (designated ADH-1) could improve the therapeutic effect of tumor-infiltrating lymphocyte (TIL)-related treatment. RESULTS: N-cadherin dramatically upregulated the expression of PD-L1 and IDO-1 through IFN-γ (interferongamma) signaling and increasing the production of free fatty acids that could promote the generation of eTreg cells. In preclinical experiments, immune reconstitution mediated by TILs slowed tumor growth and extended the survival time; however, this effect disappeared after immune system suppression by PD-L1, IDO-1 and eTreg cells. Furthermore, ADH-1 effectively reduced immunosuppression and enhanced TIL-related therapy. CONCLUSIONS: These data show that the N-cadherin antagonist ADH-1 promotes TIL antitumor responses. This important hurdle must be overcome for tumors to respond to immunotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Caderinas/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos , Microambiente Tumoral , Animais , Antígenos CD/metabolismo , Antígeno B7-H1/metabolismo , Caderinas/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Janus Quinase 1/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células PC-3 , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Am J Physiol Heart Circ Physiol ; 320(4): H1403-H1410, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577432

RESUMO

Excessive vascular permeability occurs in inflammatory disease processes. Vascular endothelial cadherin (VE-cadherin) is an adhesion protein that controls vascular permeability. We identified monoclonal antibodies (mAbs) to human VE-cadherin that activate cell adhesion and inhibit the increased permeability of endothelial cell monolayers induced by thrombin receptor activator peptide-6 (TRAP-6). Two mAbs, 8A12c and 3A5a, reduce permeability, whereas an inhibitory mAb, 2E11d, enhances permeability. Activating mAbs also reduce permeability induced by tumor necrosis factor-α (TNF-α) and vascular endothelial cell growth factor (VEGF). The activating mAbs also stabilize the organization of the adherens junctions that are disrupted by TRAP-6, VEGF, or TNF-α. The activating mAbs act directly on the adhesive function of VE-cadherin because they did not block the accumulation of actin filaments stimulated by TRAP-6 and enhance physical cell-cell adhesion of VE-cadherin-expressing tissue culture cells. Therefore, VE-cadherin function can be regulated at the cell surface to control endothelial permeability.NEW & NOTEWORTHY Excessive vascular permeability is a serious complication of many inflammatory disease conditions. We have developed monoclonal antibodies that inhibit increases in endothelial monolayer permeability induced by several signaling factors by activating VE-cadherin mediated adhesion and stabilizing cell junctions. These antibodies and/or the mechanisms they reveal may lead to important therapeutics to treat vascular leakiness and inflammation.


Assuntos
Junções Aderentes/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Caderinas/agonistas , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Nocodazol/farmacologia , Oligopeptídeos/farmacologia , Receptores de Trombina/agonistas , Receptores de Trombina/metabolismo , Transdução de Sinais , Moduladores de Tubulina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
J Am Chem Soc ; 143(2): 891-901, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33398998

RESUMO

There is an urgent need for novel therapeutic approaches to treat Alzheimer's disease (AD) with the ability to both alleviate the clinical symptoms and halt the progression of the disease. AD is characterized by the accumulation of amyloid-ß (Aß) peptides which are generated through the sequential proteolytic cleavage of the amyloid precursor protein (APP). Previous studies reported that Mint2, a neuronal adaptor protein binding both APP and the γ-secretase complex, affects APP processing and formation of pathogenic Aß. However, there have been contradicting results concerning whether Mint2 has a facilitative or suppressive effect on Aß generation. Herein, we deciphered the APP-Mint2 protein-protein interaction (PPI) via extensive probing of both backbone H-bond and side-chain interactions. We also developed a proteolytically stable, high-affinity peptide targeting the APP-Mint2 interaction. We found that both an APP binding-deficient Mint2 variant and a cell-permeable PPI inhibitor significantly reduced Aß42 levels in a neuronal in vitro model of AD. Together, these findings demonstrate a facilitative role of Mint2 in Aß formation, and the combination of genetic and pharmacological approaches suggests that targeting Mint2 is a promising therapeutic strategy to reduce pathogenic Aß levels.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Caderinas/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Peptídeos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Caderinas/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica/efeitos dos fármacos
15.
Cancer Lett ; 496: 1-15, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991950

RESUMO

Vascular normalisation, the process that reverses the structural and functional abnormalities seen in tumour-associated vessels, is also accompanied by changes in leucocyte trafficking. Our previous studies have shown the normalisation effects of the agent CD5-2 which acts to stabilise VE-Cadherin leading to increased penetration of CD8+ T cells but decreased infiltration of neutrophils (CD11b+Gr1hi) into tumour parenchyma. In the present study, we demonstrate that VE-Cadherin stabilisation through CD5-2 treatment of purified endothelial cells (ECs) results in a similar leucocyte-selective regulation of transmigration, suggesting the existence of an endothelial specific intrinsic mechanism. Further, we show by RNA sequencing (RNA-seq)-based transcriptomic analysis, that treatment of ECs with CD5-2 regulates chemokines known to be involved in leucocyte transmigration, including upregulation of CCL2 and CXCL10 that facilitate CD8+ T cell transmigration. Both in vitro and in vivo mechanistic studies revealed that the increased CCL2 expression was dependent on expression of VE-Cadherin and downstream activation of the AKT/GSK3ß/ß-catenin/TCF4 signalling pathway. CD5-2 treatment also contributed to the reorganisation of the cytoskeleton, inducing reorganisation of stress fibres to circumferential actin, which previously has been described as associated with the stabilisation of the endothelial barrier, and amplification of the transcellular migration of CD8+ T cells. Thus, we propose that promotion of endothelial junctional integrity during vascular normalisation not only inhibits vascular leak but also resets the endothelial dependent regulation of immune cell infiltration.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Caderinas/metabolismo , Endotélio Vascular/patologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/patologia , Oligonucleotídeos/farmacologia , beta Catenina/metabolismo , Animais , Antígenos CD/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/genética , Proliferação de Células , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , beta Catenina/genética
16.
Gastroenterology ; 160(4): 1359-1372.e13, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307028

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) are characterized by fibrosis and an abundance of cancer-associated fibroblasts (CAFs). We investigated strategies to disrupt interactions among CAFs, the immune system, and cancer cells, focusing on adhesion molecule CDH11, which has been associated with other fibrotic disorders and is expressed by activated fibroblasts. METHODS: We compared levels of CDH11 messenger RNA in human pancreatitis and pancreatic cancer tissues and cells with normal pancreas, and measured levels of CDH11 protein in human and mouse pancreatic lesions and normal tissues. We crossed p48-Cre;LSL-KrasG12D/+;LSL-Trp53R172H/+ (KPC) mice with CDH11-knockout mice and measured survival times of offspring. Pancreata were collected and analyzed by histology, immunohistochemistry, and (single-cell) RNA sequencing; RNA and proteins were identified by imaging mass cytometry. Some mice were given injections of PD1 antibody or gemcitabine and survival was monitored. Pancreatic cancer cells from KPC mice were subcutaneously injected into Cdh11+/+ and Cdh11-/- mice and tumor growth was monitored. Pancreatic cancer cells (mT3) from KPC mice (C57BL/6), were subcutaneously injected into Cdh11+/+ (C57BL/6J) mice and mice were given injections of antibody against CDH11, gemcitabine, or small molecule inhibitor of CDH11 (SD133) and tumor growth was monitored. RESULTS: Levels of CDH11 messenger RNA and protein were significantly higher in CAFs than in pancreatic cancer epithelial cells, human or mouse pancreatic cancer cell lines, or immune cells. KPC/Cdh11+/- and KPC/Cdh11-/- mice survived significantly longer than KPC/Cdh11+/+ mice. Markers of stromal activation entirely surrounded pancreatic intraepithelial neoplasias in KPC/Cdh11+/+ mice and incompletely in KPC/Cdh11+/- and KPC/Cdh11-/- mice, whose lesions also contained fewer FOXP3+ cells in the tumor center. Compared with pancreatic tumors in KPC/Cdh11+/+ mice, tumors of KPC/Cdh11+/- mice had increased markers of antigen processing and presentation; more lymphocytes and associated cytokines; decreased extracellular matrix components; and reductions in markers and cytokines associated with immunosuppression. Administration of the PD1 antibody did not prolong survival of KPC mice with 0, 1, or 2 alleles of Cdh11. Gemcitabine extended survival of KPC/Cdh11+/- and KPC/Cdh11-/- mice only or reduced subcutaneous tumor growth in mT3 engrafted Cdh11+/+ mice when given in combination with the CDH11 antibody. A small molecule inhibitor of CDH11 reduced growth of pre-established mT3 subcutaneous tumors only if T and B cells were present in mice. CONCLUSIONS: Knockout or inhibition of CDH11, which is expressed by CAFs in the pancreatic tumor stroma, reduces growth of pancreatic tumors, increases their response to gemcitabine, and significantly extends survival of mice. CDH11 promotes immunosuppression and extracellular matrix deposition, and might be developed as a therapeutic target for pancreatic cancer.


Assuntos
Caderinas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/imunologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/imunologia , Animais , Caderinas/antagonistas & inibidores , Caderinas/genética , Fibroblastos Associados a Câncer/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/cirurgia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metalotioneína 3 , Camundongos , Camundongos Knockout , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Pancreaticoduodenectomia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Gencitabina
17.
Cancer Res ; 81(2): 268-281, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33148662

RESUMO

Invasive lobular breast carcinoma (ILC), one of the major breast cancer histologic subtypes, exhibits unique features compared with the well-studied ductal cancer subtype (IDC). The pathognomonic feature of ILC is loss of E-cadherin, mainly caused by inactivating mutations, but the contribution of this genetic alteration to ILC-specific molecular characteristics remains largely understudied. To profile these features transcriptionally, we conducted single-cell RNA sequencing on a panel of IDC and ILC cell lines, and an IDC cell line (T47D) with CRISPR-Cas9-mediated E-cadherin knockout (KO). Inspection of intracell line heterogeneity illustrated genetically and transcriptionally distinct subpopulations in multiple cell lines and highlighted rare populations of MCF7 cells highly expressing an apoptosis-related signature, positively correlated with a preadaptation signature to estrogen deprivation. Investigation of E-cadherin KO-induced alterations showed transcriptomic membranous systems remodeling, elevated resemblance to ILCs in regulon activation, and increased sensitivity to IFNγ-mediated growth inhibition via activation of IRF1. This study reveals single-cell transcriptional heterogeneity in breast cancer cell lines and provides a resource to identify drivers of cancer progression and drug resistance. SIGNIFICANCE: This study represents a key step towards understanding heterogeneity in cancer cell lines and the role of E-cadherin depletion in contributing to the molecular features of invasive lobular breast carcinoma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/patologia , Regulação Neoplásica da Expressão Gênica , Análise de Célula Única/métodos , Transcriptoma , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias da Mama/genética , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Lobular/genética , Feminino , Humanos , Mutação , Prognóstico , Células Tumorais Cultivadas
18.
Comput Math Methods Med ; 2020: 1459368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133224

RESUMO

Circular RNAs (circRNAs) play an extremely important regulatory role in the occurrence and development of various malignant tumors including papillary thyroid cancer (PTC). circFAT1(e2) is a new type of circRNA derived from exon 2 of the FAT1 gene, which is distributed in the cytoplasm and nucleus of PTC cells. However, so far, the role of circFAT1(e2) in PTC is still unclear. In this study, circFAT1(e2) was found to be highly expressed in PTC cell lines and tissues. circFAT1(e2) knockdown suppressed PTC cell growth, migration, and invasion. Also, circFAT1(e2) acted as a sponge for potential microRNAs (miRNAs) to modulate cancer progression. A potential miRNA target was discovered to be miR-873 which was targeted by circFAT1(e2) in PTC. The dual-luciferase assay conducted later also confirmed that there was indeed a direct interaction between circFAT1(e2) and miR-873. This study also confirmed that circFAT1(e2) inhibited the miR-873 expression and thus promoted the ZEB1 expression, thus affecting the proliferation, metastasis, and invasion of PTC cells. In conclusion, the results of this study indicated that circFAT1(e2) played a carcinogenic role by targeting the miR-873/ZEB1 axis to promote PTC invasion and metastasis, which might become a potential novel target for therapy of PTC.


Assuntos
Caderinas/genética , MicroRNAs/genética , RNA Circular/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Caderinas/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Biologia Computacional , Técnicas de Silenciamento de Genes , Humanos , Conceitos Matemáticos , MicroRNAs/metabolismo , Modelos Biológicos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Metástase Neoplásica/prevenção & controle , RNA Circular/antagonistas & inibidores , RNA Circular/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
19.
Differentiation ; 115: 53-61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32891959

RESUMO

Hematopoietic stem cell-containing intra-aortic hematopoietic cell clusters (IAHCs) emerge in the dorsal aorta of the aorta-gonad-mesonephros (AGM) region during midgestation mouse embryos. We previously showed that transduction of Sox17 in CD45lowc-Kithigh cells, which are one component of IAHCs, maintained the cluster formation and the undifferentiated state, but the mechanism of the cluster formation by Sox17 has not been clarified. By microarray gene expression analysis, we found that genes for vascular endothelial-cadherin (VE-cad) and endothelial cell-selective adhesion molecule (ESAM) were expressed at high levels in Sox17-transduced c-Kit+ cells. Here we show the functional role of these adhesion molecules in the formation of IAHCs and the maintenance of the undifferentiated state by in vitro experiments. We detected VE-cad and ESAM expression in endothelial cells of dorsal aorta and IAHCs in E10.5 embryos by whole mount immunohistochemistry. Cells with the middle expression level of VE-cad and the low expression level of ESAM had the highest colony-forming ability. Tamoxifen-dependent nuclear translocation of Sox17-ERT fusion protein induced the formation of cell clusters and the expression of Cdh5 (VE-cad) and ESAM genes. We showed the induction of the Cdh5 (VE-cad) and ESAM expression and the direct interaction of Sox17 with their promoter by luciferase assay and chromatin immunoprecipitation assay, respectively. Moreover, shRNA-mediated knockdown of either Cdh5 (VE-cad) or ESAM gene in Sox17-transduced cells decreased the multilineage-colony forming potential. These findings suggest that VE-cad and ESAM play an important role in the high hematopoietic activity of IAHCs and cluster formation.


Assuntos
Antígenos CD/genética , Caderinas/genética , Moléculas de Adesão Celular/genética , Diferenciação Celular/genética , Proteínas HMGB/genética , Hematopoese/genética , Fatores de Transcrição SOXF/genética , Animais , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Caderinas/antagonistas & inibidores , Moléculas de Adesão Celular/antagonistas & inibidores , Embrião de Mamíferos , Células Endoteliais/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas HMGB/antagonistas & inibidores , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Gravidez , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição SOXF/antagonistas & inibidores
20.
Mol Pharm ; 17(10): 3941-3951, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32931292

RESUMO

In cancer photodynamic therapy (PDT), a photosensitizer taken up by cancer cells can generate reactive oxygen species upon near-infrared light activation to induce cancer cell death. To increase PDT potency and decrease its adverse effect, one approach is to conjugate the photosensitizer with an antibody that specifically targets cancer cells. In the present study, IR700, a hydrophilic phthalocyanine photosensitizer, was conjugated to the humanized monoclonal antibody ARB102, which binds specifically cadherin-17 (CDH17 aka CA17), a cell surface marker highly expressed in gastrointestinal cancer to produce ARB102-IR700. Photoimmunotherapy (PIT) of gastrointestinal cancer cell lines was conducted by ARB102-IR700 treatment and near-infrared light irradiation. The results showed that ARB102-IR700 PIT could induce cell death in CDH17-positive cancer cells with high potency. In a co-culture model, CDH17-negative and CDH17-overexpressing SW480 cells were labeled with distinct fluorescent dyes and cultured together prior to PIT treatment. The results confirmed that ARB102-IR700 PIT could kill CDH17-positive cells specifically, while leaving the adjacent CDH17-negative cells unaffected. An in vivo efficacy study was conducted using a pancreatic adenocarcinoma AsPC-1 xenograft tumor model in nude mice. Fluorescence scanning indicated that ARB102-IR700 accumulated specifically in the tumor sites. To perform PIT, at 24 and 48 h postinjection, mice were irradiated with a 680 nm laser at the tumor site to activate the photosensitizer. It was shown that ARB102-IR700 PIT could inhibit tumor growth significantly. In summary, this study demonstrated that the novel ARB102-IR700 is a promising agent for PIT in gastrointestinal cancers.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Caderinas/antagonistas & inibidores , Neoplasias Gastrointestinais/tratamento farmacológico , Fotoquimioterapia/métodos , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Caderinas/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Neoplasias Gastrointestinais/patologia , Humanos , Raios Infravermelhos , Injeções Intravenosas , Camundongos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...